Non-unimodular transversely homogeneous foliations

نویسندگان

چکیده

We give sufficient conditions for the tautness of a transversely homogenous foliation defined on compact manifold, by computing its base-like cohomology. As an application, we prove that if is non-unimodular then either ambient closure leaves or total space associated principal bundle fiber over S 1 .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Classes of Transversely Homogeneous Foliations

The foliations studied in this paper have transverse geometry modeled on a homogeneous space G/H with transition functions given by the left action of G. It is shown that the characteristic classes for such a foliation are determined by invariants of a certain flat bundle. This is used to prove that when G is semisimple, the characteristic classes are rigid under smooth deformations, extending ...

متن کامل

Transversely Hessian foliations and information geometry

A family of probability distributions parametrized by an open domain Λ in Rn defines the Fisher information matrix on this domain which is positive semi-definite. In information geometry the standard assumption has been that the Fisher information matrix is positive definite defining in this way a Riemannian metric on Λ. If we replace the "positive definite" assumption by "0-deformable" conditi...

متن کامل

Operator Algebra of Transversely Affine Foliations

We establish a geometric condition that determines when a type III von Neumann algebra arises from a foliation whose holonomy becomes affine with respect to a suitable transverse coordinate system. Under such an assumption the Godbillon-Vey class of the foliation becomes trivial in contrast to the case considered in Connes’s famous theorem.

متن کامل

Continuous Leafwise Harmonic Functions on Codimension One Transversely Isometric Foliations

Let F be a codimension one foliation on a closed manifold M which admits a transverse dimension one Riemannian foliation. Then any continuous leafwise harmonic functions are shown to be constant on leaves.

متن کامل

Fatou and Julia Components of Transversely Holomorphic Foliations

In this paper we study foliations F on compact manifolds M , of real codimension 2, with a transversal holomorphic structure. We construct a decomposition of M into dynamically defined components, similar to the Fatou/Julia sets for iteration of rational functions, or the region of discontinuity/limit set partition for Kleinian groups in PSL(2,C). All this in tune with Sullivan’s well known dic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2021

ISSN: ['0373-0956', '1777-5310']

DOI: https://doi.org/10.5802/aif.3412